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Motivation: Faster Data Analytics
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Role of My Research

Compiler Technology

—

" - automatic, but mostly focus on instruction-level inefficiency
_~._ In program implementations.

Automatic
High-Level
Program Optimization

(Big) Data Analytics + Other Data-intensive Applications

N

- high-level transformations, which is often more effective,
but requires a huge amount of manual efforts.




My Research

High-level Program Optimization:
* Implementation = Algorithm; Instruction = Formula

Algorithmic Optimization for Distance-Related Problems
[ICML’15, VLDB’15, ICDE’17, PLDI'17]

p
Autotuning Algorithmic Choice for Input Sensitivity
[PLDI'15]

e
Generalizing Loop Redundancy Elimination at a Formula
_Level joopsta’17]

Examining Compilation Scheduling of JIT-Based Runtime
System [aspLos’14]

J \

Parallel Stochastic Gradient Descent (SGD) with Sound
v Combiners [applied for patent] )




Focus of this talk

Automatic Algorithmic Optimization for
Distance-Related Problems

magnitudes of speedups.

VLDB’15, ICML’15, ICDE’2017, PLDI’17




Distance-related Problems

* These algorithms are widely used.

Problems Domain
sideans Data Mining
KNN (K Nearest Neighbor) (Among Top 10 Most Popular
KNN Join DM Algorithms)
ICP(lterative Search Problem) Image Processing
P2P (Point-to-Point Shortest Path ) Graphics
Nbody Computational

— Distance computations are the performance bottleneck.



KMeans

Accelerated k-means wi

Accelerated k-means wit

ICML"2003

Using the Triangle Inequality to Accelerate k-Means

Charles Elkan

Department of Computer Science and Engineering
Universiy of California, San Diego

LaJolls, Celifornia 920930114

Abstract

The k-means algorithmis by far the most widely
used method for discovering chusters in data. We
show how to accelerate it dramatically, while
still always computing exactly the same result
a5 the standard algorithm. The accelerated al-
gorthm avoids unneeessary distance calculations
by applying the triangle inequality in two differ-
ent ways, and by keeping track of lower and up-
‘per bounds for istances between points and cen-
ters. Experiments show that the new algorithm

ELKAN@CS.UCSD.EDU

this center. Conversely, if a point is much closer to one
center than to any other, calculating exact distances is not
necessary to know that the point should be assigned to the
first center. We show below how to make these inuitons
concrete,

We want the accelerated -means algorithm to be useble
wherever the standard algorithm is used. Therefore, we
need the accelerated algorithm to satsfy three propertes.
Firs, it should be able to stat with any inital centers, so
that ll existng inifialization methods can continue to be
used. Second, given the same initial centers, it should al-

Proceedings of Intemational Joint Conference on Neural Networks, Sa

IJCNN’11

APFast Exact k-Nearest Neighbors Algorithm for High Dimensional
Search Using k-Means Clustering and Triangle Inequality

Xuey Wang

Abstract—The k-nearest neighbors (k-NN) algorithm is a
widely used machine learning method that finds nearest
‘neighbors of a test object in a feature space. We present a new
exact k-NN algorithm called KMKNN (k-Means for A-Nearest
Neighbors) that uses the k-means clustering and the triangle
inequality to aceelerate the searching for nearest neighbors ina
high dimensional space. The KMANN algorithm has two stages.
In the buildup stage, instead of using complex tree structures
such as metric trees, kd-trees, or ball-tree, KMANN uses a
simple k-means clustering method to preprocess the training
dataset, In the searching stage, given a query object, KMANN
finds nearest training objects starting from the nearest cluster
1o the query object and uses the triangle inequality to reduce
the distance calculations, Experiments show that ~the
performance of KMKNN is surprisingly good compared to the
traditional -NN algorithm and tree-based k-NN algorithms
such as kd-trees and ball-trees. On a collection of 20 datasets
with up to 10° records and 10" dimensions, KMANN shows a 2-
to 80-fold reduction of distance calculations and a 2- to 60-fold
speedup over the traditional k-NN algorithm for 16 datasets,
Furthermore, KMANN performs significant better than a kd-
tree based £-NN algorithm for all datasets and performs better
than a ball-tree based k-NN algorithm for most datasets. The
results show that KMANN is effective for searching nearest
‘neighbors in high dimensional spaces.

[11] have been proposed to efficiently reduce the distance
caleulations and find exact nearest neighbors in higher
dimensions. These methods iteratively divide  training
objects and build tree structures using criteria such as
absolute coordinates and relative distances, so that a query
object needs to check distances with only a limited number
of training objects instead of the whole dataset. One problem
for these methods is that when the dimensionality of a
dataset is high, most of the training objects in the data
structures will end up being evaluated and the searching
efficiency is no better to or even worse than the traditional
KN algorithm [10] [18)], especally for large k values.

Due to the difficulty of accelerating the k-NN algorithm in
high dimensional space, some methods have focused on
finding approximate answers. For example, the hashing
‘method from 9] and the priority queue based method from
3] achieved a speedup of several fold over the traditional k-
NN by outputting k neighbors within (I+¢) of the true
‘nearest neighbor distances. Hart [13] and Wilson [23] used
techniques called condensing and editing to reduce objects
from the dataset and accelerate the searching for nearest
neighbors.

In this paper, we present a new algorithm called KMANN
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P2P:

(Point-to-Point
Shortest Path)

Reach-based Routing: A New AJ
Algorithms Optimized fo

SIAM’05

fof

Computing the Shortest P

Abstract
We propose shortest path algorithms that use A* search
in combination with a new graph-theoretic lower-bounding

technique based on landmarks and the triangle inequality.
Our algorithms compute optimal shortest paths and work on
any directed graph. We give experimental results showing
that the most efficient of our new algorithms outperforms
previous algorithms, in particular A" search with Euclidean
bounds, by a wide margin on road nefworks and on some
synthetic problem families.

1 Introduction

The shortest path problem is a fundamental problem
with numerous applications. In this paper we study
one of the most common variants of the problem,
where the goal is to find & point-to-point shortest
path in a weighted, directed graph. We refer to this
problem as the PP problem. We assume that for the

ALENEX'04

processing space. The best bound in this context (see
[10]) is superlinear in the output path size unless the
path is very long, Preprocessing using geometric infor-
mation and hierarchical decomposition is discussed in
[19, 28, 34 Other related work includes algorithms
for the single-source shortest path problem, such as
[1,4,6,7,13, 14, 16, 17, 18, 22, 25, 32, 35), and al-
gorithms for approximate shortest paths that use pre-
processing (3, 23, 33].

Usually one can solve the P2P problem while search-
ing only a small portion of the graph; the algorithm’s
running time then depends only on the number of vis-
ited vertices. This motivates an ouput-sensitive com-
plexity measure that we adopt. We measure algorithm
performance s a function of the number of vertices on
the output path. Note that this measure has the addi-
tional benefit of being machine-independent.

In Artificial Intelligence settings, one often needs to
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How to build a automatic framework to save all these manual efforts?




Challenges

* What are the beneficial and legal higher-level
transformations that lead to better algorithms?

* Can we have an abstraction to unify various problems
in different domains?

= Then we should be able to turn the algorithmic

optimization into compiler-based transformations.

Could have saved many years’ of manual efforts!



Case Study on KMeans

Yinyang KMeans:
A Drop-In Replacement of the Classic

KMeans with Consistent Speedup
ICML’2015

Collaborated w/ MSR
(Madan Musuvathi’s group)



Background: KMeans

* Usage: group N points (in D dimensions) into K clusters.
e Demo with N =600, D=2, K=4
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Background: KMeans

* Usage: group N points (in d dimensions) into K clusters.

e Standard KMeans [by Lioyd in 1957]: A e
ad o'y crw" JE 1
Set initial centers K "" ‘f * ""'"' ]
5 ‘,‘ 3 ':'. o g(;"w.'
I. Point Assignment: Assign points T .*'.'v" A 'z
to clusters based on d(p, ¢) Vp,c e T N

I1. Center Update: Update centers
w/ new centroids.

Convergence

Step I 1s the performance bottleneck: N*K distances calc. per iteration.

11




Prior Works

* Grouping:

- e'g' b K_D Tree [Kanungo et al., 2002] « ‘ = [ ; BN

- Overhead grows exponentially with dimension.

* Incremental Computing:
-C.g2., Triangle inequality [Elkan, 2003; Hamerly, 2010; Drake & Hamerly, 2012].
- Large Memory Overhead.
- Slowdowns for medium dim, large K & N.

*  ApproxXimation pamgea. 201
- Unable to inherit the level of trust.

Standard KMeans by Lloyd remains

the dominant choice in practice!

12



Yinyang KMeans

Grouping + Incremental Computing

* On average, 9.36X faster than classic Means.

* No slowdown regardless of N, K, d.

* Guarantee to produce the same result as Standard KMeans.

Yin: upper bound
V.S.
Yang: lower bound
Yin (these bounds comprises the
filters for distance computations)

A harmony w/ contrary forces



Triangular Inequality (TI)

* The fundamental tool for getting bounds:

c’ E_andmark]

TI: |d(qg,c) -d(c’,c)| <=d(q,c) <=d(g,c') + d(c',c)

Lower bound:
Ib(q, ¢)=|10—-1|=9

Upper bound:
ub(q,¢)=10+1=11

14



How are bounds used?

Example: Will q switch its assignment from ¢’; to
c’, 1n the next iteration? (q 1s currently assigned to

C1.)

Temporal | |
Landmark C, 2\ point for clustering

c 2 © centerin current iter
~ ° '? © center in next iter
Q: upper bound ub(q,c';) =6 Temporal

\ <=2+4=6 Landmark
4 \\ 10 _;2
L __________ V1
q

lower bound Ib(q,c',) =9 ¢’
>>10-1=9

2

Conclusion: No, because ub(qg,c’,) < 1b(q,c’,).

15



Design of Yinyang Kmeans

* Innovative way of using upper and lower bounds.

— Joint of filters: Group(Global) filter + Local filter.
Group (Global) filter Local filter

¢ HH

16



Global Filtering

o
filtering rule: if ub(q,c'') < Ib(q, G),

then g will not change its assignment.

How to compute these bounds?

ub(q,c',) = ub(q, c,) + 4c,
Ib(q, G') = Ib(q,G) — max(4Ac,), V¢,

Bdn@ritin2ohpstosd o delivdPddtance

1. é&&ﬂa@éafg]&ﬁeéﬁﬁ%eiséﬁ\@ved
(e.g., c,
2. max (4c): biggest drifter (how far
a center moved across iteration) .

(e.g., 4cy).

current iter: G’ ={C’1,C’, ..., C'«x} - C1
next iter: G = {C.,C, ..., Ck} - C1

(q is currently assigned to C)) 17



Group Filtering

iltering Rule: if ub(qg,c') < Ib(q, G'),
then q will not change its
assignment to any center in G'.

How to compute these bounds?

ub(q,c,) = ub(q, ¢,) + 4c,
Ib(q, G,) <lb(q,G";) - max (4(c)), vc e G,

Benefits of m lower bounds:
1. 1b(q.Gi): local closest center 1n Gi.
2. max (4(c)): local biggest drifter.

Over 80% redundant distance
computations can be removed

Divide centers into m groups:
{G1,Gy, ..., Gm}

18



Group Filtering

* Overhead Analysis (m groups):

ub(g,c',) = ub(q, c,) + 4c,
Ib(q, G",) < Ib(q,G,) - max (4c), vc € G,

Time Cost: K distances (for center drifts) + N ¢ (m + 1) bounds
lightweight compared to standard N ¢ K distances.

Space Cost: N ¢ (m + 1) for maintaining m lower bounds per point.
comparable to N * D for storing N points in D dimension.

19



Group Filtering

* When/How to group centers?

one time grouping
over initial centers
through 5-iter Kmeans.

* How many groups?

A space-conscious elastic design:
m = [ K/10 if space allows Grouping centers into m
max value otherwise groups: {G1,G, ..., Gm}

20



Local Filtering

Filtering rule: for each center in
the remaining group,
if Min(q,G’i) < Ib(q, Gi) - 4c;,
then q will not change its
assighnment to ¢;.

No extra memory cost!

Efficiency:
Over 90% redundant distance computations can be removed.

21



Evaluation

* Compared to three other methods:
— Standard (Lloyd’s) K-Means
— Elkan’s K-Means 2003/
— Drake’s K-Means 2012/

* Input: real-world data sets (with different N, K, Dim)
— 4 from UCI machine learning repository /Bache Lichman, 2013]
— 4 other commonly used 1image data sets /wang et al, 2012.

* Implemented in GraphLab (a map-reduce framework)
— http://research.csc.ncsu.edu/nc-caps/yykmeans.tar.bz2

* Two machines
— 16GB memory, 8-core 17-3770K processor
— 4GB memory, 4-core Core2 CPU

22



Evaluation (1668, 8-core)

Clustering results are the same as those of the standard Kmeans.

(K=1024)

lkan' ' '
BN Eikar’'s [l Drake's WM Yinyang Baseline: Standard Kmeans

w
o

)
N
3

Speedup (X)

0 mnl anl

) 3 ) ) @ N\ AN\ &\ o
A % A N . Y’ o
R Al N I
Ypeoo < S o ., 6“\0 60005 @o,bo 56“5 *eggv\
@ NN S
Wt e

Datasets (size, dim)
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. Baseline: Classic K-means
Evaluation (1668, 8-core)
UKbench Speedup
B Eikan's M Drake's [ Yinyang
40
30

Speedup (X)

10_-_IILIII I
0

1024 10000

K
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HE . HPCC /... / Archive
mm Microsoft Implement the Yinyang K-Means Clustering Algorithm

P O W e r B I Created and last modified by Lorraine Chapman on Mar 22, 2016

This project is available as an internship opportunity with HPCC Systems this summer.

Towards Yinyang K-means on GPU

. by Vadim Markovtsev 26 July 2016

The codez: GitHub.

A Yinyang K-Means: A Replacement
45 points by jcr 549 days ago | hide | past | web

A Towards Yinyang K-means on GPU (sourced.tech)

61 points by tanoku 170 days ago | hide | past | web | 14 comments | favorite

Q Olivier Grisel
_ @ogrisel + ) datatonic
teamdatatonic

Yinyang K-Meal vinyang K-Mear Yinyang K-Means: A Drop-In Replact
faster than Stan the Classic K-M the Classic K-Means with Consistent =888Z_ . |

 Barney Pell
barneyp

25



Algorithmic Optimization Design

* Triangle Inequality Optimization (TOP). |
_ . £ Landmark

q = > Yo

— landmark definition.
“temporal landmarks " for iterative problems like KMeans.

— group filtering.

# of groups to strike a good tradeoff between space cost
and redundant distance computation elimination.

26



Automatic Framework

TOP: Enabling Algorithmic Optimizations
for Distance-related Problems

Collaborated w/ MSR
(Madan Musuvathi’s group)

27



TOP Framework

problem / \ building
semantic blocks

TOP AP m
\ & -

Abstract Distance-Related Problem

Variants of Tl Optimizations
T Our Analysis and Abstraction i i

——
D
( KNN join NBody Shortest |stance
28




Abstraction for Distance-related Problem

* A 5-element Tuple <Q, T, D, R, C>
* finding some kind of Relations between two sets of points,

a Query set and a Target set, based on certain type of Distance
and under some update Constraints.

Problems Distance Relation Constraints

KMeans Points Centers Euclidean Top 1 Iterative
Closest updateto T

29



KMeans Written with Our APls

Distance

—4TOP_defDistance(Euclidean); // distance definition
T = init();
changedFlag = 1;
while (changedFlag){

Query | |Target

Constraint |

/ // find the closest target (a pb'\n;c i%)‘) for each pointin S
N = TOP_findClosestTargets(1, S, T);

™ TOP_update(T, &changedFlag, N, S); // T gets updated
}

I

Relation

30



TOP Framework

problem / \building
semantic blocks
{ToP AP m
&

Abstract Distance-Related Problem

Variants of Tl Optimizations

i i Our Analysis and Abstraction I
—
D
( KNN join NBody Shortest |stance
31




Key Optimization Knobs

* Landmark definitions.
- e.g., temporal landmark (e.g., Kmeans),

spatial landmark (e.g., KNN).

L em==
.~

o SpNAY ber ------- /a N k
s

7’

Query: {g1,92,03, ..}

¢ Orde 01\ [ parl / 0" Target: Iﬂ,dth.QC

[}
]
/ \ .’ ‘\b ¢
. \ O' // ~..t§-‘¢"
AW 4

.
* /4
\__!;1__ A\

Beat the algorithms manually

optimized by experts!
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Optimization Selection

* 7 principles of applying TI optimization.

* Rule-based Selection Framework (Clang).

1. Decide the best way of defining landmark and the number
of landmarks to use.

2. Insert codes preparing landmarks for optimizations.

3. Replace these TOP APIs (e.g., TOP_findClosestTargets) with
optimized codes.

33



Evaluation

* Tested on six distance-related problems.

* Compared to two other methods for each problem:

— Standard version without TI optimization.

— Manual optimization from previous works.

* Input: real-world data sets used in previous papers.

* Machine
— Intel 15-4570 CPU and 8 G memory.

34



Evaluation — Running time

Each point 1n the graph stands for one input setting.

Baseline: Standard versions

10*

c

O .

z %

> g

S 102 -

= 10 O

2 \Y%

%3

D AV O Knn

= \V4 -+ Knnjoin

b v Kmeans

° 4 ICP

) O Nbody
2z P2P
——Reference line

0 1 102 10*

Speedups(X) by manual version

Average speedups: 50X for TOP vs. 20X for manual version from previous works.

Over 93% of the distance computation can be saved by TOP.



Tl-based Strength Reduction [PLDI'17]

* Theoretic foundation for generalization of TI to compute bounds of “vector
dot product™!

- Deep learning, e.g., Restricted Boltzmann Machines.
Text mining which uses cosine similarity as “distances”.
- Computation results 1s not directly used for comparison.

 Static analysis to detect code patterns for optimization (Clang).

36



KNN on GPU

* A fundamental tension: Redundancy and Regularity.
— critical for performance.

* Our solution:
— Careful implementations on GPU,
— Elastic algorithmic design,
— Up to 12X speedups over the state-of-art version (CUBLAS).

37



My Research

High-level Program Optimization:
* Implementation = Algorithm; Instruction = Formula

Algorithmic Optimization for Distance-Related Problems
[ICML’15, VLDB’15, ICDE’17, PLDI’17]

p
Autotuning Algorithmic Choice for Input Sensitivity
[PLDI’15]

"
Generalizing Loop Redundancy Elimination at a Formula
\Level [OOPSLA’17]

p
Examining Compilation Scheduling of JIT-Based Runtime }
System [aspLos’14]

"Parallel Stochastic Gradient Descent with Sound
v \Combiners [applied for patent] 2




Other work

Autotuning Algorithmic Choice for Input
Sensitivity [PLDI’15]

Collaborated w/ MIT
(Saman Amarasinghe's group)

39



Algorithmic Autotuning

* Best optimization: autotuning + alg. choices.
— E.g., what 1s best optimization for sorting?

600
Merge  mmmmmlp-Quick sl |5 rtion

1700

800
Merge mmmmmllpQuick sl |5ertion

3840

150
Quick q Merge q Insertion

— Huge number of potential optimizations by varying the
type and order of algorithm to use.

40



Our Contribution

* 3X averaged speedup over static optimization
— on 6 benchmarks (e.g., sorting, clustering, helmholtz).

* Language and compiler support.

* A Two-level input learning framework
— the enormous optimization space,

— variable accuracy of algorithmic choices.

41



My Research

High-level Program Optimization:
* Implementation = Algorithm; Instruction = Formula

~

Algorithmic Optimization for Distance-Related Problems

[ICML’15, VLDB’15, ICDE’17, PLDI’17] )

\

p
Autotuning Algorithmic Choice for Input Sensitivity
[PLDI’15]

-

Generalizing Loop Redundancy Elimination at a Formula
\Level [OOPSLA’17]

p

System [aspLos’14]

"Parallel Stochastic Gradient Descent with Sound
v \Combiners [applied for patent]

J
Examining Compilation Scheduling of JIT-Based Runtime }

42




Future Research (Long-Term, High-Level)
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Future Research (3~5 Years)

— Combine the higher-level program optimization and lower-
level optimizations. (High-performance Computing)

— Automate extractions of the domain-specific knowledge
for high-level program optimizations. (NLP, text mining,
ontology, ...)

— Combine algorithmic optimizations with approximation-
based computing?

— Deep learning in bioinformatics, astronomy, etc.
* Hyper-parameter tuning + structural learning
* Incremental computing for the searching process.
— Cyber-Physical Systems (CPS).
* Program language support for expressing user specifications, e.g.,
helping resolve dependency in smart homes.
* embedded intelligence: data analytics in edge computing (/o7).
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Publications

[OOPSLA’17] “GLORE: Generalized Loop Redundancy Elimination upon LER-Notation”, Yufei Ding, Xipeng Shen,
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Chen, Yufei Ding, Xipeng Shen, to appear.
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